AN AI-DRIVEN MODEL FOR OPERATIONAL THREAT INTELLIGENCE TO ENHANCE REAL-TIME INCIDENT DETECTION AND RESPONSE IN THE KENYAN JUDICIARY
DOI:
https://doi.org/10.29121/digisecforensics.v2.i2.2025.64Keywords:
Cybersecurity, Incident Management, Real-Time Threat Detection, Cyber Threat Intelligence, Artificial IntelligenceAbstract
Current threat intelligence systems often lack scalable, adaptive AI architectures capable of delivering real time incident detection and dynamic response, particularly in resource constrained environment such as judicial institutions. This paper presents a novel AI-driven architectural design for operational threat intelligence, specifically tailored to enhance cybersecurity in the Kenyan judiciary system. The proposed model integrates three foundational frameworks which are, Integrated Adaptive Cyber Defense (IACD), the Cyber Kill Chain, and Moving Target Defense (MTD) into an architecture that supports real-time data ingestion, continuous AI model retraining, and automated response orchestration. Key features include a dynamic feedback loop for adaptive learning, AI-powered multi-stage threat detection aligned with attack lifecycle mapping, and resource-efficient dynamic defense mechanisms suitable for low-resource judicial environments. This design significantly improves incident response capabilities by enabling faster, more accurate threat detection and automated mitigation, reducing mean time to detect and respond. By providing a scalable, transparent, and explainable AI model, the architecture offers a practical blueprint for enhancing cybersecurity resilience in judicial systems worldwide, with applicability to the unique challenges faced by Kenyan courts. This study lays the foundation for future extensions involving federated learning to enable secure, multi-court deployments, further strengthening collective judicial cybersecurity defenses.
References
Adesokan-Imran, T. O., Popoola, A. D., Ejiofor, V. O., Salako, A. O., and Onyenaucheya, O. S. (2025). Predictive Cybersecurity Risk Modeling in Healthcare by Leveraging AI and Machine Learning for Proactive Threat Detection. Journal of Engineering Research and Reports, 27(4), 144–165. https://doi.org/10.9734/JERR/2025/V27I41463 | DOI: https://doi.org/10.9734/jerr/2025/v27i41463
Alfatemi, A., Rahouti, M., Amin, R., ALJamal, S., Xiong, K., and Xin, Y. (2024). Advancing DDoS Attack Detection: A Synergistic Approach Using Deep Residual Neural Networks and Synthetic Oversampling. arXiv.
ANOMALI. (2024). How AI is Driving the Evolution of Threat Intelligence. Anomali Blog.
Arora, S., Khare, P., and Gupta, S. (2024). AI-Driven DDoS Mitigation at the Edge: Leveraging Machine Learning for Real-Time Threat Detection and Response. In 2024 International Conference on Data Science and Network Security (ICDSNS) (pp. 1–7). IEEE. https://doi.org/10.1109/ICDSNS62112.2024.10690930 DOI: https://doi.org/10.1109/ICDSNS62112.2024.10690930
Bala, B., and Behal, S. (2024). A Brief Survey of Data Preprocessing in Machine Learning and Deep Learning Techniques. In Proceedings of the 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (pp. 1755–1762). IEEE. https://doi.org/10.1109/I-SMAC61858.2024.10714767 DOI: https://doi.org/10.1109/I-SMAC61858.2024.10714767
Balbix. (2025). Understanding Agentic AI and its Cybersecurity Applications. Balbix Insights.
Chen, F., Wu, T., Nguyen, V., Wang, S., Hu, H., Abuadbba, A., and Rudolph, C. (2024). PEEK: Phishing Evolution Framework for Phishing Generation and Evolving Pattern Analysis using Large Language Models. arXiv.
Dai, Y., Qian, X., and Yang, C. (2025). Deep Reinforcement Learning-Based Asymmetric Convolutional Autoencoder for Intrusion Detection. Journal of ICT Standardization. https://doi.org/10.13052/JICTS2245-800X.1314 DOI: https://doi.org/10.13052/jicts2245-800X.1314
Darktrace. (2025). Cyber Kill Chain. Darktrace Cyber AI Glossary.
Deimos Blog. (2024). AI and Cybersecurity: Cloud Security. Deimos Blog.
Dimitriadis, A., Papoutsis, A., Kavalieros, D., Tsikrika, T., Vrochidis, S., and Kompatsiaris, I. (2025). EVACTI : Evaluating the Actionability of Cyber Threat Intelligence. International Journal of Information Security, 24(3), 1–13. https://doi.org/10.1007/s10207-025-01033-z DOI: https://doi.org/10.1007/s10207-025-01033-z
E'mari, S. Al, Sanjalawe, Y., and Fataftah, F. (2025). AI-Driven Security Systems and Intelligence Threat Response Using Autonomous Cyber Defense. In [Book chapter] (pp. 35–78). IGI Global. https://doi.org/10.4018/979-8-3373-0954-5.ch002 DOI: https://doi.org/10.4018/979-8-3373-0954-5.ch002
Google, N. S. (2020). GLU Variants Improve Transformer. arXiv. https://arxiv.org/pdf/2002.05202
Goswami, S. S., Mondal, S., Halder, R., Nayak, J., and Sil, A. (2024). Exploring the Impact of Artificial Intelligence Integration on Cybersecurity: A Comprehensive Analysis. Journal of Industrial Intelligence, 2(2), 73–93. https://doi.org/10.56578/JII020202 DOI: https://doi.org/10.56578/jii020202
Gummadi, H. S. B. (2025). AI-Augmented Workflow Resilience Framework for Cybersecurity Risk Mitigation in Hospital AI Systems. World Journal of Advanced Research and Reviews, 26(2), 1175–1182. https://doi.org/10.30574/WJARR.2025.26.2.1754 DOI: https://doi.org/10.30574/wjarr.2025.26.2.1754
Haug, M., and Velarde, G. (2025). Performance of Machine Learning Classifiers for Anomaly Detection in Cyber Security Applications. In Lecture Notes in Networks and Systems (Vol. 1346, pp. 285–294). Springer. https://doi.org/10.1007/978-3-031-87647-9_25 DOI: https://doi.org/10.1007/978-3-031-87647-9_25
Hejleh, A. A., Sufian, M., Almallah, O., and Abdelnabi, H. (2025). AI-Driven Intrusion Detection: A Machine Learning-Based Approach. In 2025 International Conference on New Trends in Computing Sciences (ICTCS 2025) (pp. 64–71). IEEE. https://doi.org/10.1109/ICTCS65341.2025.10989292 DOI: https://doi.org/10.1109/ICTCS65341.2025.10989292
Hemanth Kumar, B., Teja Nuka, S., Malempati, M., Kumar Sriram, H., Mashetty, S., Kannan, S., and Professor, A. (2025). Big Data in Cybersecurity: Enhancing Threat Detection with AI and ML. Metallurgical and Materials Engineering, 31(3), 12–20. https://doi.org/10.63278/1315 DOI: https://doi.org/10.63278/1315
IACD. (2024). Getting Ready for SOAR: Readiness framework. IACD Automate. https://www.iacdautomate.org/getting-ready-for-soar
IACD. (2025). Orchestration. IACD Automate.
Irshad, E., and Siddiqui, A. B. (2024). Accurate Attack Detection in Intrusion Detection System for Cyber Threat Intelligence Feeds using Machine Learning Techniques. KIET Journal of Computing and Information Sciences, 7(1), 28–41. https://doi.org/10.51153/KJCIS.V7I1.198 DOI: https://doi.org/10.51153/kjcis.v7i1.198
Jaiswal, B. D. (2025). Designing Scalable Software Automation Frameworks for Cybersecurity threat Detection and Response. International Journal of Scientific Research and Management, 13(2), 1958–1980. https://doi.org/10.18535/IJSRM/V13I02.EC03 DOI: https://doi.org/10.18535/ijsrm/v13i02.ec03
Khodaskar, M., Medhane, D., Ingle, R., Buchade, A., and Khodaskar, A. (2022). Feature-Based Intrusion Detection System with Support Vector Machine. In 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS 2022). IEEE. https://doi.org/10.1109/ICBDS53701.2022.9935972 DOI: https://doi.org/10.1109/ICBDS53701.2022.9935972
Kwentoa, I. K. (2025). AI-Driven Threat Intelligence for Enterprise Cybersecurity. Journal of Next-Generation Research 5.0, 1(4). https://doi.org/10.70792/JNGR5.0.V1I4.125 DOI: https://doi.org/10.70792/jngr5.0.v1i4.125
Lakshmanan, M., Adnan, M. M., Reddy, R. A., Vasukidevi, G., and Aarthy, G. (2024). A Graph Neural Network and Transformer Encoder Technique for Anomaly and Cyber Threat Detection in Smart Grids. In International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS 2024). IEEE. https://doi.org/10.1109/IACIS61494.2024.10721753 DOI: https://doi.org/10.1109/IACIS61494.2024.10721753
Lakshmi, S., Maalan, M. R., and Kishore Kumar, R. (2024). Parametric Cyber Defense: A Sophisticated Machine Learning Architecture for Advanced Intrusion Detection and Threat Classification. In Proceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI 2024) (pp. 87–93). IEEE. https://doi.org/10.1109/ICDICI62993.2024.10810824 DOI: https://doi.org/10.1109/ICDICI62993.2024.10810824
Lakshminarayana, S., Chen, Y., Konstantinou, C., Mashima, D., and Srivastava, A. K. (2024). Survey of Moving Target Defense in Power Grids: Design Principles, Tradeoffs, and Future Directions. arXiv.
Lin, Y.-D., Lu, Y.-H., Hwang, R.-H., Lai, Y.-C., Sudyana, D., and Lee, W.-B. (2025). Evolving ML-Based Intrusion Detection: Cyber Threat Intelligence for Dynamic Model Updates. IEEE Transactions on Machine Learning in Communications and Networking, 3, 605–622. https://doi.org/10.1109/TMLCN.2025.3564587 DOI: https://doi.org/10.1109/TMLCN.2025.3564587
Liu, Y., Li, W., and Chao, T. (2025). Defense System Modeling and Effectiveness Evaluation Analysis Based on Kill Chain Model. Advances in Transdisciplinary Engineering, 68, 219–228. https://doi.org/10.3233/ATDE250045 DOI: https://doi.org/10.3233/ATDE250045
Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Jiao, J., and Liu, Y. (2024). VMamba: Visual State Space Model. arXiv.
Manasa, K. (2025). Survey on Cyber Kill Chain. International Journal of Engineering Technology and Management Sciences, 9(Special Issue 1), 9. https://doi.org/10.46647/ijetms.2025.v09si01.020 DOI: https://doi.org/10.46647/ijetms.2025.v09si01.020
Olateju, O. O., Okon, S. U., Igwenagu, U. T. I., Salami, A. A., Oladoyinbo, T. O., and Olaniyi, O. O. (2024). Combating the Challenges of false Positives in AI-Driven Anomaly Detection Systems and Enhancing Data Security in the Cloud. Asian Journal of Research in Computer Science, 17(6), 264–292. https://doi.org/10.9734/AJRCOS/2024/V17I6472 DOI: https://doi.org/10.9734/ajrcos/2024/v17i6472
P, A., T, S., B, S., and Jose, J. (2025). Enhancing Cyber Threat Detection Accuracy: An AI-Powered Approach with Feature Selection and Ensemble Learning. IJFMR – International Journal for Multidisciplinary Research, 7(2). https://doi.org/10.36948/IJFMR.2025.V07I02.39812 DOI: https://doi.org/10.36948/ijfmr.2025.v07i02.39812
Pal, S., Joshi, I., and Devi, C. R. (2025). Deep Learning Architectures for Natural Language Understanding and Computer Vision Applications in Cybersecurity. Rademics. https://doi.org/10.71443/9789349552319 DOI: https://doi.org/10.71443/9789349552319
R, V. P. M., Vardhan, V. S., S, S., K, V. K., and G, M. M. R. (2025). AI-Driven Cyber Threat Detection and Log Analysis. In 2025 International Conference on Inventive Computation Technologies (ICICT) (pp. 676–681). IEEE. https://doi.org/10.1109/ICICT64420.2025.11004938 DOI: https://doi.org/10.1109/ICICT64420.2025.11004938
Rahmati, M. (2025). Towards Explainable and Lightweight AI for Real-Time Cyber Threat Hunting in Edge Networks. arXiv.
Raj, P., Rocha, A., Simar, Singh, P., Dutta, K., and Sundaravadivazhagan, B. (Eds.). (2025). Building Embodied AI Systems: The Agents, the Architecture Principles, Challenges, and Application Domains. Springer. https://doi.org/10.1007/978-3-031-68256-8 DOI: https://doi.org/10.1007/978-3-031-68256-8
Sani, A. I., and Sani, A. I. (2025). Cyber Threat Intelligence for Industrial Automation: AI-Powered Strategies. In [Book chapter] (pp. 131–148). IGI Global. https://doi.org/10.4018/979-8-3373-3241-3.ch007 DOI: https://doi.org/10.4018/979-8-3373-3241-3.ch007
SERP. (2025). ReGLU: GLU Activation Function and Its Variants. SERP AI.
Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari, B., Ramé, A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon, M., Ramos, S., Kumar, R., Lan, C. Le, Jerome, S., … Andreev, A. (2024). Gemma 2: Improving Open Language Models at a Practical Size. arXiv.
Uddin, M. A., and Sarker, I. H. (2024). An Explainable Transformer-Based Model for Phishing Email Detection: A Large Language Model Approach. arXiv. DOI: https://doi.org/10.2139/ssrn.4785953
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., … Wen, J.-R. (2023). A Survey of Large Language Models. Proceedings of the Korean Computer Congress.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Paul Okanda, Muriithi Sarah

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.



















